

ROTEIRO DE ATIVIDADES EXPERIMENTAIS PARA O LABORATÓRIO DE FÍSICA II

SUMÁRIO

- 1 LEI DE HOOKE E ASSOSSIAÇÃO DE MOLAS
- 2- PÊNDULO SIMPLES
- 3 ONDAS ESTACIONÁRIAS NUMA CORDA
- 4 DETERMINAÇÃO DE MASSA ESPECÍFICA
- 5- VASOS COMUNICANTES

1 -LEI DE HOOKE E ASSOCIAÇÃO DE MOLAS

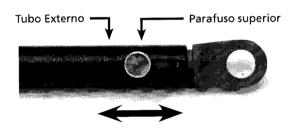
Objetivo – Estudar a relação entre a força aplicada e a deformação sofrida por um corpo elástico (molas), observando experimentalmente a Lei de Hooke.

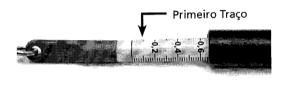
Objetivos específicos – Pesquisar a fundamentação teórica pertinente, realizar montagens, realizar medidas de constantes elásticas de molas, e de suas associações em série e em paralelo, observando o erro experimental, propagar o erro experimental na obtenção de grandezas físicas derivadas das medições, tirar conclusões, apresentar relatório.

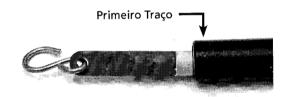
INSTRUÇÕES BÁSICAS

DINAMÔMETRO TUBULAR

O dinamômetro é um instrumento de medida e serve para medir a intensidade de uma força, tendo como principio de funcionamento a Lei de Hooke. A deformação ΔX da mola é diretamente proporcional a ação da força F que a produziu.

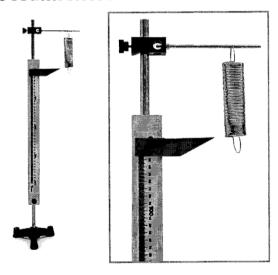

O dinamômetro tubular é constituído de um tubo externo que serve para o ajuste do zero, uma parte superior que serve para pendurar o dinamômetro e um embolo interno onde temos uma mola com uma escala conforme foto abaixo.




Ajustes

Para utilizar o dinamômetro tubular devemos ajustá-lo na posição de trabalho. (vertical, horizontal ou inclinado).

Para ajustar o dinamômetro devemos soltar o parafuso superior e movimentar o tubo externo para cima ou para baixo até que o primeiro traço da escala fique junto com a extremidade inferior do tubo externo.


- D dinamômetro 1N de capacidade máxima, tem sua escala com 100 divisões para 1N, logo cada divisão corresponde a 0,01N.
- O dinamômetro 2N de capacidade máxima, tem sua escala com 100 divisões para 2N, logo cada divisão corresponde a 0,02N.
- O dinamômetro 5N de capacidade máxima, tem sua escala com 100 divisões para 5N, logo cada divisão corresponde a 0,05N.
- O dinamômetro 10N de capacidade máxima, tem sua escala com 100 divisões para 10N, logo cada divisão corresponde a 0,1N.

LEI DE HOOKE

Material Necessário

- 01 fixador plástico para pendurar mola
- **01** tripé
- 01 régua milimetrada 400mm
- 01 fixador de plástico com manípulo
- 01 manípulo com cabeça de plástico
- 01 indicador de plástico esquerdo com fixação magnética
- 01 indicador de plástico direito com fixação magnética
- 01 mola Lei de Hooke
- 04 massas aferidas 50g com gancho
- 01 haste fêmea 405mm
- 01 haste macho 405mm

Procedimentos

- **01.** Montar o equipamento conforme a figura acima.
- **02.** Medir o comprimento inicial da mola L_0 . Anotar o valor obtido na tabela.
- **03.** Prender um peso de **0,50N** na extremidade da mola.
- **04.** Medir o comprimento final da mola. Anotar o valor obtido na tabela.

05. Calcular a deformação sofrida pela mola.

$$(\Delta L = L_f - L_0).$$

- **06.** Retirar o peso de **0,5N** e verificar se a mola volta para a posição inicial.
- **07.** Acrescentar novos pesos e repetir as sequências, completando a tabela.

	F(N)	L ₀ (m)	L _f (m)	∆L(M)	F/∆L	média
1	0,50					
2	1,00					
3	1,50					
4	2,00					

- 08. Calcular o valor de F/∆L para cada situação.
- 09. Calcular o valor médio de F/∆L.

						•
						**

						421
				<u> </u>		•
1. Deter	minar o co	eficiente	angula	r da ret	a.	
			_			•
	FAARESTONIA AA DOORGERÂNS STOLEF					**
2. Deter	minar o co	oeficiente	linear o	da reta.		~
b =						
				AAAAAAA AAAA AAAA AAAA		
	e acontece que F aum		valores	de Δ L? /	A me-	
dida		entou?				

	e de elasticidade?
. Enunciar a Le	ei de Hooke.
. Os resultados	s obtidos comprovam a lei?

•

ASSOCIAÇÃO DE MOLAS

Material Necessário

- 01 fixador plástico para pendurar mola
- **01** tripé
- 01 réqua milimetrada 400mm
- 01 fixador de plástico com manípulo
- 01 manípulo com cabeça de plástico
- 01 indicador de plástico esquerdo com fixação magnética
- 01 indicador de plástico direito com fixação magnética
- 03 molas pequenas;
- 04 massas aferidas 50g com gancho
- 01 haste fêmea 405mm
- 01 haste macho 405mm

ASSOCIAÇÃO EM SÉRIE Procedimentos

- **01.** Montar o equipamento conforme a figura
- **02.** Medir o comprimento inicial das molas L_0 . Anotar o valor obtido na tabela.
- **03.** Prender um peso de **0,50N** na extremidade das molas.
- **04.** Medir o comprimento final das molas. Anotar o valor obtido na tabela.

05. Calcular a deformação sofrida pelas molas.

$$(\Delta L = L_f - L_0).$$

- **06.** Retirar o peso de **0,5N** e verificar se as molas voltam para a posição inicial.
- **07.** Acrescentar novos pesos e repetir as sequências, completando a tabela.

	F(N)	L _n (m)	L _f (m)	∆L(M)	F/∆L	média
1	0,50					
2	1,00			<u> </u>		

08. Calcular o valor de F/∆L para cada situação.

09. Calcular o valor médio de **F**/△**L** (Constante elástica da mola).

- Comparar o valor da constante elástica obtida neste experimento com o valor obtido no primeiro experimento.
- 11. Repita o experimento utilizando 3 molas.

Material Necessário

- 01 fixador plástico para pendurar mola
- 01 tripé
- 01 réqua milimetrada 400mm
- 01 fixador de plástico com manípulo
- 01 manípulo com cabeça de plástico
- 01 indicador de plástico esquerdo com fixação magnética
- 01 indicador de plástico direito com fixação magnética
- 01 acessório para associação de molas;
- 04 massas aferidas 50g com gancho
- 01 haste fêmea 405mm
- 01 haste macho 405mm

ASSOCIAÇÃO EM PARALELO Procedimentos

- **01.** Montar o equipamento conforme a figura acima.
- **02.** Medir o comprimento inicial das molas L_0 . Anotar o valor obtido na tabela.
- **03.** Prender um peso de **0,50N** na extremidade das molas.
- **04.** Medir o comprimento final das molas. Anotar o valor obtido na tabela.

05. Calcular a deformação sofrida pelas molas.

$$(\Delta L = L_f - L_0).$$

- **06.** Retirar o peso de **0,5N** e verificar se as molas voltam para a posição inicial.
- **07.** Acrescentar novos pesos e repetir as sequências, completando a tabela.

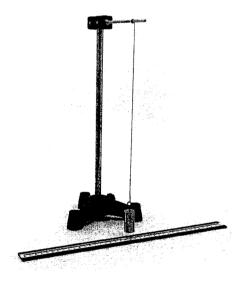
	F(N)	$L_0(m)$	$L_f(m)$	∆L(M)	F/∆L	média
1	1,00					
2	2,00					

- 08. Calcular o valor de F/△L para cada situação.
- **09.** Calcular o valor médio de **F**/△**L** (Constante elástica da mola).
- Comparar o valor da constante elástica obtida neste experimento com o valor obtido no primeiro experimento.
- 11. Repita o experimento utilizando 3 molas.

2 -PÊNDULO SIMPLES

Objetivo – Observar experimentalmente a dependência do período de um pêndulo simples com as grandezas físicas dos seus componentes (massa, comprimento do fio, amplitude de oscilação).

Objetivos específicos – Pesquisar a fundamentação teórica pertinente, aplicar conhecimentos do movimento oscilatório, realizar medidas de períodos observando o erro experimental, propagar o erro experimental na obtenção de grandezas físicas derivadas das medições, tirar conclusões, apresentar relatório.


PÊNDULO SIMPLES

RELAÇÃO ENTRE PERÍODO DE OSCILAÇÃO E AMPLITUDE

Material Necessário

- 01 travessão de aço para Momento Estático
- **01** trena de 2m
- 01 tripé tipo estrela com manípulo
- 01 cilindro de latão com gancho
- 01 fixador de plástico para pendurar mola
- 01 carretel de linha
- 01 haste fêmea 405mm
- 01 haste macho 405mm

Procedimentos

- 01. Montar o equipamento de acordo com a foto. Prender o cilindro de latão na extremidade livre do fio com 80cm de comprimento. Afastar 10 cm de sua posição de equilíbrio (10cm é o valor da amplitude). Soltar a massa e deixar oscilar livremente.
- 02. Conceituar período de um pêndulo simples.

03. Medir o tempo de 10 oscilações e determ
nar o período de oscilação, ou seja, o temp
de uma oscilação. Transcrever o resultado r

04. Repetir os procedimentos para as amplitudes:

15cm

20cm

05. Completar a tabela.

Amplitude	Tempo de 10 oscilações	• T(s)
10cm		
15cm		
20cm		

06. Observando os va	lores da tabela, pode-se no-
	do período (variam/não va-
	muito para as diversas
amplitudes, isso p	ermite concluir que o perío-
do de oscilação (d	lepende/não depende)
da amplit	ude de oscilação.

07. Usando o cilindro de latão, repetir as operações **01** e **03** mas agora para uma amplitude bem grande. Qual o período obtido?

T= :

08.	O que você conclui comparando os resultados da tabela com o resultado anterior?			
)9.	Enunciar a primeira lei do pêndulo simples,			

09. Enunciar a primeira lei do pêndulo simples, a que relaciona período de oscilação com amplitude de oscilação (Lei do Isocronismo).

	140

RELAÇÃO ENTRE PERÍODO DE OSCILAÇÃO E MASSA DO PÊNDULO

Material Necessário

- 01 travessão de aço para Momento Estático
- **01** trena de 2m
- 01 tripé tipo estrela com manípulo
- 01 cilindro de nylon com gancho
- 01 cilindro de latão com gancho
- 01 cilindro de alumínio com gancho
- 01 fixador de plástico para pendurar mola
- 01 carretel de linha
- 01 haste fêmea 405mm
- 01 haste macho 405mm

Procedimentos

- 01. Prender o corpo de prova de nylon na extremidade do fio. Afastar 15cm de sua posição de equilíbrio (15cm é a amplitude) e soltar deixando oscilar livremente.
- 02. Medir o tempo de 10 oscilações e determinar o período de oscilação (tempo de uma oscilação) e transcrever o resultado na tabela.
- Repetir os procedimentos para as massas de alumínio e latão.

Massa;	Tempo de 10 oscilações	T(s)
Nylon		
Alumínio		
Latão		

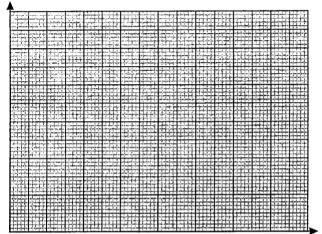
04.	Observando a tabela, pode-se notar que os valores dos períodos (variam/não variam) muito para as diversas varia-					
	ções de massa. Isso nos permite concluir que o período de oscilação (depende/não depende) da massa do pêndulo.					
05.	Enunciar a segunda lei do pêndulo simples, a que relaciona período de oscilação com a massa do pêndulo (lei das massas).					

06. Por que determinar o tempo de 10 oscilações, quando se deseja o tempo de uma oscilação?
07. Para pequenas amplitudes o período de um pêndulo simples (depende/independe) da amplitude.
08. Para uma mesma amplitude, se aumentarmos a massa do pêndulo o período (aumenta/ diminui/ não se altera)
09. Se para efetuar uma oscilação completa o tempo foi de 0,15s , conclui-se que o período vale e a frequência
RELAÇÃO ENTRE PERÍODO E COMPRIMENTO DO PÊNDULO
Procedimentos
01. Agora com um cilindro de latão e amplitude pequena, fazer com que o pêndulo oscile livremente.
1111011101

03. Medir o comprimento do pêndulo.

comprimento e anotar na tabela.

04. Determinar o período de oscilação para esse


05. Diminuir o comprimento do fio, aproximadamente **10cm**, enrolando-o no suporte, medir o novo comprimento e anotar na tabela.

06. Determinar o período de oscilação para esse novo comprimento e anotar na tabela.

07. Repetir as sequências e completar a tabela abaixo sendo que a última medida tenha aproximandamente **0,30m**.

L(m)	Tempo de 10 oscilações	- T(s)	g(m/s²)

08. Fazer o gráfico T=f(L).

T(s)	L(m)	E/T_
		E(T)= E(L)=
	 	

09. Qual o aspecto do gráfico T=f(L)?

10. Fazer o gráfico T²=f(L)

	L(m)	T ² (s ²)
$E(T^2)=$	The state of the s	
E(L)=		
a=		
b=		
		
Equação=		

ŧ.	7	173	2.1	FΕ	7.E	3.1	3.1	1		1	11	77		Τ.	Ŧ	1.1	5	Œ	1 1	2.1	2.3	1	0	, ,	τ.	13	-	1	11	1.1	П	'n,	2.	11	3.1		3		ű.	7.1	Ξ
7		1	1	H	Ħ	Ц	7.7	-11			7.3	п	ц	1.	÷	1	2	4	1.	31	41	-	ч	-	н	1	1	4	П	4	4			1:	7	-		4	н	H	+
-Ş-	H	ų.	11	H	₩	+1	4	4	+	÷	14	H	źi	÷	H	+	4	+	H	44	H	-1-	н	H	Ť	+	Ť	i÷	H	17	+	11	+:	++	71	-	-	-	11	ŤŹ	せ
4	7	-	-		<u>14</u>	**	*	7	-1-	4	**	11		1	Ľ	-	*	ţ	1	7	17		1	33	77	Τ.	Ξ	-	1	7**	Ξ	1	77		-	1		7	77	1.3	T
1	1			-2	13	÷	Ė	Ł	1	ţ	ij	1	fri	+	+	-	÷	-	-	Ŧ		+	4	Ų,	÷	-1-3	÷	÷	H	ŢŢ	¥	-	ц	H	+	+	÷-	H	н	4.5	÷
4	*	1		ij	Ť	14	+	-	+	H	+;	ŧì	14	7	۳	Ħ	+	-	ы	Ħ	•		1	11	77	77			TT:	T	1		4.3	17	1	7	11		11	I	1
1	ũ.		\mathbf{T}	\mathbf{r}	13	\overline{z}	T	3			П	U		3	3	П	Ξ	1	1	Ţ	1	-	П	Ţ	H	T		П.	13	11	4	Ŧ	4	1	4	4	1	1	H	-	-}-
÷	-			+ -	. ;	÷	÷	+	+	-	÷	÷	٠	÷	÷	÷	÷	÷	13		÷	-		7	+	+	٠	÷	H	ìì	÷	+	++	+-	+	ж	+	•	:+	++	÷
÷	-	1	++	17	•	34	17	+		+	+1	Ħ	1.	+	Ť	낦	t	1	Ħ	11	1		1	13	Ħ		*	11	Ħ	î.L	13		71	10	35		13.	1.1	11	11	7
-		4	4.1	13	H		1			Ц	77	Τ.	Ξ	1	4	П	Ţ		П	7.	T.		4	Τ.	71		4	1	H	7.7	1		44	-		7	4	1	-		1
4-		-	+		1+		-	44				ł÷	H	+	+	÷ŀ	+	+-	+	41	4-	+	H	44	14	+	+	ų.	++	4-5	+	+	4.	44	,-	-		+	++	++	+
-	Ц.	1.0	113		::1	ы	ŹΙ	#		1	ы	п		ı	۲	5.5	1	I	ш	#	1		н	ij	3.3	10	Φ	Ľ.	11	H	Ŧ	1	1	1		4	4	1	11	П	1
1	-	-	44	17	-	-1	-	+	-1-	4	H	14	1	4		Н	H	1	H	11	4	4	ч	H	4	-1-	-	H	1+	H	-1-	-1-	44	-	-	-	+	H	4	j.	nf.
+	H			12	11		÷	H	н	н	††	1+	•	+	۴	Н	+	+	Ħ	Ť	÷	+	7	17	H	ti	Ť	H	ŧ÷	11	t	1	7	11	T	+	+	rt	11	Ť	Ť
7	777		3.5	T	* 1		77	7	1	7	7	Ľ	7	T	1	П		7	11	7	14	7	4	77	77	1	7		П	П	Ŧ		17	1	_		1		-1	17	7
4		1		1-6	Н	+	+	+	-	H	Ħ	44	4-	+	H	++	+	÷	tt	11	÷	+	۲ł	ti	1-1	13	rr	۱Ť	Ħ	Ħ	Ť		+		-1-		ti	†	*1	ij	1
±	13.	-	+1	Ħ	廿	Ť	*	77			11	Ħ		Ť	t	П	Ť	Ŧ	Ħ	11	7	t	Ħ		Τ	1	-	-	12	F	7	7	I		-		7	T	П	\Box	Ξ.
7.	#	17	-11	14	П	Ц		44			14		H	1	H	H	-	4	Ξ,	7	T.	4	н	ч	7	-	4	F	÷	++	÷	+-)	T	-1-4	right.	-	++	Ħ	+	1+	+
÷	H	+		ŧ÷	H	н	1		-	н	††	1,		4	H	H	н	+	1	+1	7	+	Н	11			7	ᅼ	13.	**	Ť	5	7.	17		1	1	17.	11	ш	
1.				T.	п	U	T			7	7.1	17		1	Н	п	T	I		I	τ		Ц.	77	33		T.		17	11	I	9	T	7	4	1	11	H	11	F	Ţ
1.	1	1.7	-11	П	11	T	-	1	-	4	14	74	44	+	7	н	Ŧ	7	н	+1	1	1	н	+	H	н	Η-	H	B	44	+		1	~			÷	†	-	11	+
÷	Η-	1		H	H	++	₩	++	-	÷	tt	14	H	+	۰	٠	н	Η-	;+	+1	++	+	Н	Ħ	Ħ			()	Ħ	++	+	Ŧ	+			rá-		rt	71	77	H
Ţ.	7	11		12.		П	T	+1		ц	ц	I	I	Ξ	4	П	T	7	ц	41	-	H	П	H	7	-13	1		13	14	f	7	4	44	\pm	-	4	-	Н	-	4
÷	₩	-	+:	+	÷	H	÷	+		н	H	+÷	+	÷	H	₩	÷	4-	₩		÷		H	-	+	+	++-	H	H	++	+	Н	+	٠н	4	-	17:	牛	**	+	rt.
7	rr		#	7	T	11		Ŧ			Υİ	71	7	*	Н	11	*		7	1	77		ш	п	I	ם	d	~		77		H	73	Đ	1	Ŧ			7.1	H	1
Ţ		7	7-1	1.5	Н	П	T	Τ.			H		Ξ	+	4	H	3	7	1					11	H	н	+		**	77	+	+	73	•	-	-	Ž.	+	₩	₩	+
÷	+	+	\Rightarrow	H	++	++	H	+	-		17	11	74	+	+	++	÷	+	Ť	÷	*	1			11	ti	+	H	17	14	+	77		17	-		7	1	tt	17	7
7	1	7		11	П	71	7	T			П	H	11	T	7	Fi	I	Т	П	Ŧ	T		П	Ħ	14	1	1	Ħ	H	П	÷		77	71	7	4	FF	H	77	11	7
÷	μ.		+++	++	#	++	H	#	٠.	-	++	++	H	÷	÷	+	3	+	÷	÷	44		H	++	H	-14	~}~	+	ŧt	++	÷	++	+	+	-	-	÷	!+	1-1	9-4	
ī.	1.7.	12	4.1	1.5	ш	7.3	4	H			ш	ш		J.	3	Ц	3.	4	14	Ž.	L	4	ı.L	Ξ		L		1	ш	ш	÷	4	بأجار	13	I			1	44	14	7
1	щ		41	14	П	H		-		-	Ħ	H	1	4	+	П	Д	-	Н	÷	÷	4	н	ч	H	-1-3	-	17	14	77	4	+	4	++	4	н.		₩.	++		
7-	÷	1-1-1	7	tŵ	•	+1	+	+	-	÷	H	14	11	+	÷	H	٠	Ť	Ħ	Ť	÷	1	-1	н	Ŷ.	13	-	*	ĺΤ	11	7		1	**		Ť	77	tt	1.1	in	
I	_		~	17	п	7	Ε				7	12	\mathbf{E}	7	М	п	-		П	П	7		п	-	П	1	1		13	η	T	7.7	T	Ŧ			-		77	17	7
1	4	-	44	++	÷ŀ	H	74		-	4	H	۲÷	-	+	H	++	'n	-	н	÷ł	н	+	н	₩	+1	4 7	-1-	+	H	4 -}	÷ł		+1	-	_	-	-	-	+	H	+
ŕ	H.	1:1:1	4-1	1.		ŹΙ	Ė	+		π	钍	tt	Ù	#	±	Н	Ù	Ė	ш	11	Ħ		1	红	Ħ	12	1	H	ш	11	Ħ	1	扛	T)	Ŧ	-			П	П	1
T	u	-	4	17	П	П	.1.4	13		4	H	1,	H	÷	4	1	44	1	4	71	14	1	4	Ц	H	.[.]	+	-	H	H	н	4-	1:	-Fi	44	4		-	14	44	4
÷	+	1	43				÷	7	+	÷	÷÷	H	٠,	÷	÷	÷	÷	+	H	7	٠		+	++	1	17	Ė	1.1	1	٠.	-		7.5	11	-		7	-	-1	ΣĪ	Ť
ľ		-		E	Ħ	21	-	H			П	П	4	1	7						77		Ц.	Щ	17		-	1	1	14	4		7.7	10	42	4	-	7	ч	ц	-
ŕ	7	H	++	14	÷ſ	H	1-1	Ξ	н	+	H	H	21	4	ų.	7	+1	÷	H	41	+-	4	+	H	н	+	+	H	H	÷	۶H	14	+ŧ	+	+	-1-	m	+	٠ŀ	14	÷
-	7	117	4.3	tt	łt	計				+		**			É	H	71	Ť	7		1	+	1	Ħ	7 7	1		H	ΤÌ	Ħ	T	13	11	72	1	\mathbf{T}	1	+	75	1	Ť
4				1.3.		П	П	П		4	17	H		Ţ	I	П	5.	T		I	П	1		14	4.1	1	-			П		7	14	12	-	1	1	4	١,	ş.,	1
'n.		1	-1-1	14	7	H	41	1	-1-	ų.	H	H	ŝŧ	Ŧ	ŧ	Ħ	4	-	H		7	-	-	4	44	H	4	H	14	+	Н	11	++	+			T	-	н	÷	+
t	۲t	1		Į.		tt	1-	i	1	-	14	tŤ	검	Ť	tf:	Ľ.	•	1	Ħ	Ť	7	Ť	H:		Ť	1	Ť	ij.	tt.	H	1	11	11	ti			3.	3			力
_		L	44	T^{γ}	: 1	τ	- 1	37	1	-	i.	T:	Τ,	3	1	Ξ.	7	1	77	5	2.4	7	-1-	: 7	2.4	T		- 7	L.,	7.	7	7	100	_	40	7			1.	T	

11. Qual o aspecto do gráfico T²=f(L)

12. Baseado	na	questão	anterior,	podemos	con-
cluir que	T é	:			

- () diretamente proporcional a $\boldsymbol{\textbf{L}}.$
- () inversamente proporcional a L.
- () diretamente proporcional a L².
- () diretamente proporcional a $\sqrt{\mathbf{L}}$.

13. Sabe-se que
$$T = 2\pi \sqrt{\frac{L}{g}}$$
. Conhecendo os valores de L e T calcule g.

14. A que fórmula se chegou?

15. Utilizando os valores	da tabela,	determinar	O
valor médio de a .			

g_m=_____

16. Ent	unciar	a terceira	lei do	pêndulo	simples	(lei
dos	comr	rimentos)	1_			

3 - ONDAS ESTACIONÁRIAS NUMA CORDA

Objetivo – Produzir ondas estacionárias em cordas vibrantes e realizar medidas. **Objetivos específicos** – Pesquisar a fundamentação teórica pertinente, aplicar conhecimentos da ondulatória, realizar medidas, observando o erro experimental, para determinar a relação entre a força de tração na corda e o comprimento da onda estacionária, e entre a força de tração e a densidade linear de massa da corda, propagar o erro experimental na obtenção de grandezas físicas derivadas das medições, tirar conclusões, apresentar relatório

ONDA ESTACIONÁRIA NUMA CORDA (ROTEIROS DO ALUNO)

OBJETIVOS

- Analisar experimentalmente a relação entre a força de tração na corda e o comprimento de onda da onda estacionária.
- Verificar a relação entre a força de tração na corda e a densidade linear.

MATERIAL UTILIZADO

- 1 dinamômetro de 1N.
- 4 cordas com diferentes diâmetros;
- 1 conjunto em L para onda estacionaria;
- 1 fonte de alimentação 0 a 12V DC 1,5A;
- 1 haste regulável suporte para dinamômetro.

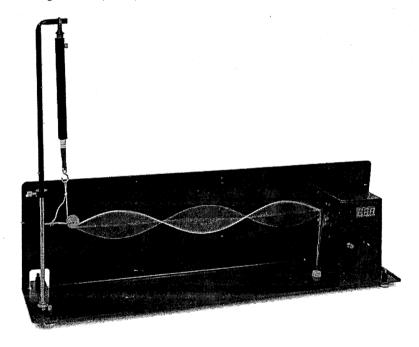


Fig.22.8 - Dispositivo utilizado nos experimentos com onda estacionária

Primeira Parte: Relação entre a força de tração e o comprimento de onda numa onda estacionária.

PROCEDIMENTOS EXPERIMENTAIS

- Seguir as instruções de montagem do equipamento mostradas anteriormente.
- 2. Fixar no local adequado a corda constituída por dois fios.
- Aplicar no dinamômetro uma força de tração igual a 0,30N. Movimentar haste que fixa o dinamômetro.
- 4. Ligar o equipamento deixando vibrar em uma frequência média. Manter a frequência constante durante o experimento.

5. Ajustar cuidadosamente o dinamômetro movimentando-o para cima ou para baixo até encontrar o primeiro modo de vibração (fundamental ou 1º harmônico), conforme mostra a figura 22.13. Se a força de tração exceder 1,10N, diminuir um pouco a frequência para não danificar o dinamômetro.

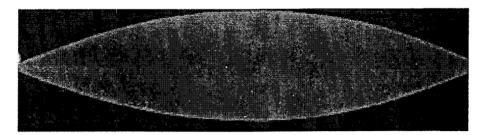
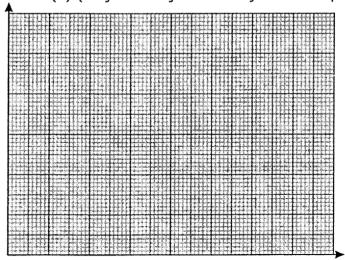
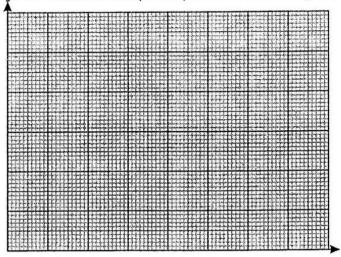


Fig.22.9 - Configuração da onda estacionária no modo fundamental.


6. Anotar na tabela 1 o valor da força de tração F indicada no dinamômetro, o número de nós e o número de ventres.

					Tabe	ela 1					
	Property Chief	de ós	S PARKURSA PERMODEL	nº de entres		F(N)	λ(m) λ ²	(m²)	F/λ	2
1º 2º		ewond on Fwh ewers			244			menor, conductors algorithms on another section	ner om over merinekersenmen	mminocoodormenidenines	
3º 4º	Andrew Angelon (property)				почення в при			# # # #	21.0		· december
						.,,					

- 7. Com uma trena medir o comprimento de onda λ e anotar na tabela 1.
- **8.** Movimentar o dinamômetro para baixo diminuindo a intensidade da força aplicada e encontrar o próximo modo de vibração.
- **9.** Repetir os procedimentos para coletar os valores de F e λ até completar a tabela 1.


ANÁLISE DE DADOS E CONCLUSÕES

10. Construir o gráfico $F=f(\lambda)$ (força de tração em função do comprimento de onda).

11. Qual o aspecto da curva obtida?

- 12. Qual a provável relação entre F e λ?
- 13. Calcular a razão entre F/λ^2 , com os valores experimentais tabelados.
- 14. Utilizar a mudança de variável adequada para linearizar o gráfico.

- 15. Calcular o coeficiente angular do gráfico linearizado.
- **16.** Escrever a equação que relaciona a força de tração na corda e o comprimento de onda, $F = f(\lambda)$.

Segunda Parte: Relação entre Força de Tração e Densidade Linear

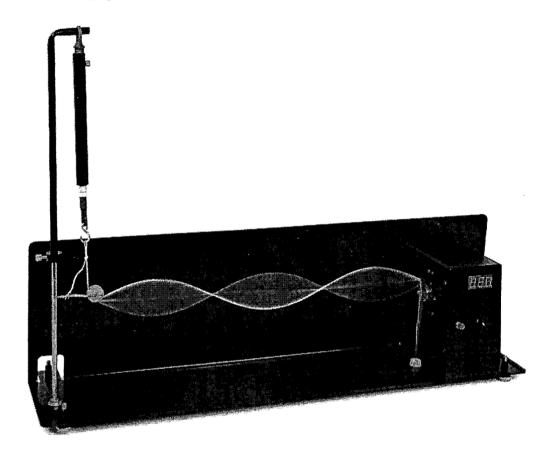
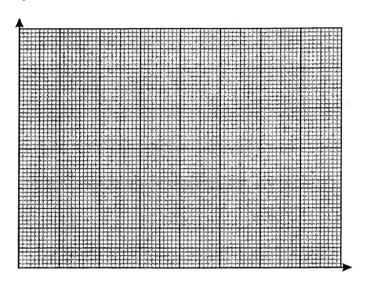


Fig.22.10 - Dispositivo utilizado nos experimentos com onda estacionária

- 12. Montar o equipamento conforme mostra a figura 22.14.
- 13. Fixar no equipamento a corda com quatro fios.
- 14. Ligar o equipamento deixando vibrar com a frequência máxima.
- **15.** Ajustar o dinamômetro movimentando-o para cima ou para baixo até encontrar o segundo modo de vibração.
- **16.** Manter constante a frequência e o comprimento de onda. Anotar na tabela abaixo a intensidade da força de tração.
- 17. No experimento considerar a seguinte convenção:
 - Corda com um fio será considerada com densidade linear igual a ρ_0 .
 - Corda com dois fios será considerada com densidade linear igual a $2\rho_0$.
 - Corda com três fios será considerada com densidade linear igual a $3\rho_0$.
 - Corda com quatro fios será considerada com densidade linear igual a 4ρ₀.

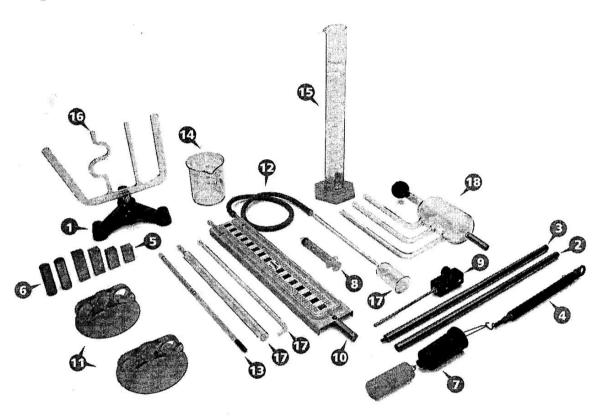

$\rho(\rho_0)$	λγ(m)	F(N)	F/ρ
4			
3			n concerce errorm dechebilit 1977
<u> </u>			

18. Desligar o aparelho sem modificar a frequência e trocar a corda de 4 fios pela de 3 fios.

19. Repetir os procedimentos experimentais anteriores para as cordas com densidades 3, 2 e 1.

ANÁLISE DE DADOS E CONCLUSÕES

20. Construir o gráfico $F=f(\rho)$ (força de tração em função da densidade linear medida em número de fios).



- 21. Qual é o aspecto da curva obtida no gráfico F versus ρ ?
- **22.** Qual a relação de proporcionalidade entre a força de tração na corda e a densidade?

4 – DETERMINAÇÃO DE MASSA ESPECÍFICA

Objetivo – Determinar experimentalmente a massa específica de sólidos e líquidos. **Objetivos específicos** – Pesquisar a fundamentação teórica pertinente, aplicar conhecimentos da hidrostática, realizar medidas, observando o erro experimental, da massa específica de sólidos e líquidos, propagar o erro experimental na obtenção de grandezas físicas derivadas das medições, tirar conclusões, apresentar relatório.

EQUIPAMENTO

N°	Quant.	Descrição
1	01	tripé tipo estrela;
2	01	haste fêmea com 405mm;
3	01	haste macho com 405mm;
4	01	dinamômetro tubular de 1N e precisão 0,01N;
5	04	corpos de prova em alumínio (paralelepípedo) com 6cm, 5cm, 4cm e 3cm;
6	02	corpos de prova 6cm (cobre e alumínio);
7	01	duplo cilindro de Arquimedes;
8	01	seringa de plástico 40ml;
9	01	presilha plástica com manipulo e haste de 13cm;
10	0.1	painel em U 75x400mm;
11	01	par de Magdeburg Ø11cm;
12	01	mangueira látex 60cm;
13	01:	densimetro 0,700 a 1,000;
14	01	becker 250ml;
15	01	proveta de 250ml;
16	01	aparelho para vasos comunicantes com 4 tubos;
17	01	jogo com 3 sondas de imersão 30cm;
18	01	aparelho para propagação da pressão com 3 tubos;

Determinar a massa específica de um sólido de forma regular.

Material Necessário

- 01 balança [não acompanha o kit]
- 05 corpos de prova de alumínio
- 01 régua de 30cm [não acompanha o kit]

Procedimentos

1. Medir com a régua as dimensões dos corpos de prova.

	_
N C (cm)	L (cm) A (m)
64	
UI	
02	
03	
04	
05	

N - número de ordem

C – comprimento

L - largura

A – altura

V – volume

m – massa do corpo de prova

μ - massa específica

- 2. Calcular os volumes dos corpos de prova e anotar os resultados na tabela abaixo.
- 3. Medir as massas dos corpos de prova e anotar os resultados na tabela abaixo.
- 4. Determinar a massa específica do material de que é feito o corpo de prova, anotar os resultados na tabela abaixo.

N V(d	:m³) m('g) μ(g/cm³)	
01				
02 03			and it depolosus as a	
04			2000	
05				
Média				

$$\mu = \frac{m}{V}$$

- 5. A massa específica do alumínio, valor tabelado é igual a 2,7 g/cm³.
- 6. Considerando a tolerância de erro (5%), pode-se afirmar que o valor médio da massa específica do alumínio é igual ao valor tabelado?
- 7. Caso tenha encontrado um valor médio muito diferente do valor tabelado, refazer o experimento.
- 8. Analisando a tabela, conclui-se que, entre a massa e o volume de diversos corpos, feitos de mesmo material, existe proporcionalidade ______ (direta / inversa / quadrática).

9. Construir o gráfico da massa em função do volume m = f(V). 10. Determinar o coeficiente angular do gráfico m = f(V). 11. Comparar o valor obtido no item 10 com o valor médio da massa específica encontrado na tabela. O que se conclui? 12. Transformar o valor médio da massa específica (tabela) para o SI. Qual o valor obtido?

Determinar a massa específica da água.

Material Necessário

- 01 balança (não acompanha o kit)
- 01 proveta de 250ml
- 01 litro de água
- 01 densímetro

Procedimentos

1.	Med	dir a	massa	da	proveta	vazia
	m. =	=				

- 2. Colocar na proveta 240ml de água (V = 240ml).
- 3. Medir a massa da proveta com a água.

4.	Determinar	a massa	do líquido	contido n	a proveta	e anotar	o valor	na	tabela
	$m = m_2 - m_1$	=	***************************************						

5. Anotar na tabela abaixo o volume e a massa de água

N V(cn	n³) m(g)	μ(a /	′cm³)
	Management of Management and American	A THE RESIDENCE OF SHARE SHARES	2000
água		and the second s	
0.00110			
auua			

6. Determinar o valor da massa específica da água e anotar na tabela.

$$\mu = \frac{m}{V}$$

- 7. A massa específica da água, valor tabelado é igual a 1g/cm³. Considerando a tolerância de erro (5%), pode-se afirmar que o valor da massa específica da água é igual ao valor tabelado?
- **8.** Caso tenha encontrado um valor médio muito diferente do valor tabelado, refazer o experimento.
- **9.** Comprovar o valor da massa específica da água utilizando o densímetro e comparar com o valor tabelado.

Determinar a massa específica do álcool.

Material Necessário

- 01 balança
- 01 proveta de 250ml
- 01 litro de álcool

experimento.

indicado com o valor tabelado.

- 01 densímetro

Procedimentos

1.	Medir a massa da proveta vazia. m ₁ =
2.	Colocar na proveta 200ml de álcool.
3.	Medir a massa da proveta com o álcool. m ₂ =
4.	Determinar a massa do líquido contido na proveta e anotar o valor na tabela. $m = m_2 - m_1 = $
5.	Anotar na tabela abaixo o volume e a massa específica do álcool.
	N V(cm³) μ(g/cm³)
6.	A massa específica do álcool, valor tabelado é igual a 0,8 g/cm³. Considerando a tolerância de erro (5%), pode-se afirmar que o valor da massa específica do álcool é igual ao valor tabelado?
7.	Caso tenha encontrado um valor médio muito diferente do valor tabelado, refazer o

8. Comprovar o valor da massa específica do álcool utilizando o densímetro e comparar o valor

Determinar a massa específica de um corpo de prova sólido, encontrando o seu volume pelo deslocamento de água.

	Mate	rial	Necess	ário
--	------	------	--------	------

- 01 l	oala	nça
--------	------	-----

- 01 proveta de 250ml

Corpo 1 - _____

- 02 corpos de prova

-	01 metro de barbante
Pr	ocedimentos
1.	Medir a massa dos corpos de prova e anotar na tabela abaixo.
	$m_1 = g$ $m_2 = g$
2.	Colocar na proveta 150ml de água e anotar o nível da água. V _I = cm ³
3.	Colocar o corpo de prova 1 no interior do líquido e anotar o volume final indicado na proveta. $V_{F1} = \underline{\hspace{1cm}} cm^3$
4.	Colocar o corpo de prova 2 no interior do líquido e anotar o volume final indicado na proveta. $V_{f2} = \underline{\hspace{1cm}} cm^3$
5.	Determinar o volume de cada corpo de prova e anotar na tabela abaixo $V_1 = V_5 - V_1 = $ $V_2 = V_F - V_1 = $ $V_2 = V_5 - V_1 = $
	Medir a massa dos corpos de prova. $M_1 = \underline{\qquad} - M_2 = \underline{\qquad}$
7.	Anotar na tabela abaixo os dados dos itens 5 e 6 e determinar a massa específica dos corpos de prova.
	m (kg) V (cm³) μ(g/cm³) Corpo 2
8.	Com auxílio de uma tabela de valores de massa específica identificar as substâncias utilizadas no experimento acima.

Experimento com líquidos de massas específicas diferentes.

Material Necessário

- 01 becker 250ml
- 01 quantidade de leite 100ml
- 01 quantidade de álcool 100ml
- 01 quantidade de óleo 100ml;

Procedimentos

- 1. Colocar no becker 60ml de leite.
- 2. Colocar na superfície do leite um círculo de rolha e derramar lentamente 60ml de óleo.
- 3. Em seguida derramar lentamente 60ml de álcool.
- 4. Qual é o líquido de maior massa específica?
- 5. Porque colocando lentamente os líquidos eles não se misturam.

5-VASOS COMUNICANTES

Objetivo – Observar experimentalmente o Teorema de Steavin..

Objetivos específicos – Pesquisar a fundamentação teórica pertinente, aplicar conhecimentos da hidrostática, realizar medidas, observando o erro experimental, de níveis de fluidos nos vários ramos de um dispositivo de vasos comunicantes, propagar o erro experimental na obtenção de grandezas físicas derivadas das medições, analisar o erro experimental porcentual, tirar conclusões, apresentar relatório.

Vasos Comunicantes

Material Necessário

- 01 aparelho de vasos comunicantes
- 01 um tripé
- 01 quantidade de água 250ml com 3 gotas de azul de metileno ou um outro corante.
- 01 régua (não acompanha o kit)

P	ro	ce	di	m	e	nte	SC
			•				

••	Wieliter		a.pa				
2.	Colocar comunic		_	no	interior	dos	vasos
3.	Escolher	um	nível	de	referência,	sup	erfície

		*							
4.	Medi	ir ['] com	a régu	іа а	altu	ra do	níve	el da a	água
	até a	superi	fície d	a m	esa.				
	H1 =	_	H	12 =			No de proposition de		
	H3 =		H	14 =					

1.	Montar o equipamento conforme foto.	
2.	Colocar a água no interior dos vasos comunicantes.	
3.	Escolher um nível de referência, superfície da mesa.	
4.	Medir com a régua a altura do nível da água até a superfície da mesa. H1 = H2 = H3 = H4 =	
5.	Existe diferença entre os valores medidos?	
6.	Citar algumas aplicações dos vasos comunicante	s.
	*	